高二数学上册第三单元知识点

篇1:高二数学上册第三单元知识点
事件与频率
频率,是单位时间内完成周期性变化的次数,是描述周期运动频繁程度的量,常用符号f或ν表示,单位为秒分之一,符号为s-1。
古典概型
古典概型也叫传统概率、其定义是由法国数学家拉普拉斯 (Laplace ) 提出的。如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。例如:①掷一次硬币的实验(质地均匀的硬币),只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的;②如掷一个质地均匀骰子的实验,可能出现的六个点数每个都是等可能的;③又如对有限件外形相同的产品进行抽样检验,也属于这个模型。
古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
人教B版高二数学上册第三单元古典概型知识点
随机数的含义与应用
随机数是专门的随机试验的结果。
在真正关键性的应用中,比如在密码学中,人们一般使用真正的随机数。
C语言、C++、C#、Java、Matlab等程序语言和软件中都有对应的随机数生成函数,如rand等。
篇2:高二数学上册第三单元知识点
古典概型
(★★)
一枚硬币连抛4次,求恰有2次正面的概率。
【举一反三】一枚硬币连抛3次,至少有一次正面向上的概率______。
(★★★☆)
某列车有4节车厢,现有6个人准备乘坐。设每一位乘客进入每节车厢的可能性是相等的,
则这6位乘客进入各节车厢的人数恰好为0、1、2、3的概率为多少?
(★★☆)
某小学六年级有6个班,每个班各有40名学生。现要在6个班中随机选出2个班参加电视
台的现场娱乐活动,活动中有1次抽奖活动,抽取4名幸运观众。那么六年级学生小宝成为幸运观众的概率为________。
【举一反三】学校门口经常有小贩搞摸奖活动。某小贩在一只黑色口袋里装有颜色不同的
50只小球,其中红球1只,黄球2只,绿球10只,其余为白球。搅拌均匀后,每2元摸1个球,奖品的情况标注在球上(如图)。如果花4元钱,同时摸2个球,那么获10元奖品的概率为______。
篇3:高二数学上册第三单元知识点
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为
人教B版高二数学上册第三单元知识点:随机数的含义与应用
;在整个抽样过程中各个个体被抽到的概率为
人教B版高二数学上册第三单元知识点:随机数的含义与应用
;
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率:
相关高中数学知识点:系统抽样
系统抽样的概念:
当整体中个体数较多时,将整体均分为几个部分,然后按一定的规则,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。
系统抽样的步骤:
(1)采用随机方式将总体中的个体编号;
(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即
人教B版高二数学上册第三单元知识点:随机数的含义与应用
=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足
人教B版高二数学上册第三单元知识点:随机数的含义与应用
是整数;
(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;
(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。
相关高中数学知识点:分层抽样
分层抽样:
当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。
利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。
不放回抽样和放回抽样:
在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.
随机抽样、系统抽样、分层抽样都是不放回抽样
分层抽样的特点:
(1)分层抽样适用于差异明显的几部分组成的情况;
(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;
(3)分层抽样充分利用已掌握的信息,使样具有良好的代表性;
(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。