欢迎来到易高考!永久域名:yigaokao.com
当前位置: 首页 >高一数学必修二第一章

高一数学必修二第一章

2025-08-15
高一数学必修二第一章

篇1:高一数学必修二第一章

第一章 空间几何体

1.1柱、锥、台、球的结构特征

1.2空间几何体的三视图和直观图

1 三视图:

正视图:从前往后

侧视图:从左往右

俯视图:从上往下

2 画三视图的原则:

长对齐、高对齐、宽相等

3直观图:斜二测画法

4斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

1.3 空间几何体的表面积与体积

(一 )空间几何体的表面积

1棱柱、棱锥的表面积: 各个面面积之和

2 圆柱的表面积 S 2rl2r2

3 圆锥的表面积Srlr

4 圆台的表面积SrlrRlR

5 球的表面积S4R

(二)空间几何体的体积

1柱体的体积 VS底h 2222

1S底h 3

13台体的体积 VS上S上S下S下)h 3

434球体的体积 VR 32锥体的体积 V第一章 空间几何体

篇2:高一数学必修二第一章

1.高一数学必修一第一章知识点

  第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

  主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

  第二:平面向量和三角函数。

  重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三:数列。

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四:空间向量和立体几何。

  在里面重点考察两个方面:一个是证明;一个是计算。

2.高一数学必修一第一章知识点

  指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

3.高一数学必修一第一章知识点

  一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集:N*或N+

  整数集:Z

  有理数集:Q

  实数集:R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xR|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集个数:

  有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

  三、集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

篇3:高一数学必修二第一章

1.高一数学必修一第一章知识点梳理 篇一

  函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称。

2.高一数学必修一第一章知识点梳理 篇二

  映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”

  对于映射f:A→B来说,则应满足:

  (1)集合A中的每一个元素,在集合B中都有象,并且象是的;

  (2)集合A中不同的元素,在集合B中对应的象可以是同一个;

  (3)不要求集合B中的每一个元素在集合A中都有原象。

3.高一数学必修一第一章知识点梳理 篇三

  函数的奇偶性

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2)奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  注意:

  1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

  2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

4.高一数学必修一第一章知识点梳理 篇四

  求函数值域的方法

  ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

  ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

  ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;

  ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

  ⑤单调性法:利用函数的单调性求值域;

  ⑥图象法:二次函数必画草图求其值域;

  ⑦利用对号函数

  ⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

5.高一数学必修一第一章知识点梳理 篇五

  多面体的结构特征

  (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

  正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

  (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

  正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

  (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

6.高一数学必修一第一章知识点梳理 篇六

  函数模型及其应用

  本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

  1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

  2、用函数解应用题的基本步骤是:

  (1)阅读并且理解题意.(关键是数据、字母的实际意义);

  (2)设量建模;

  (3)求解函数模型;

  (4)简要回答实际问题。

  常见考法:

  本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

篇4:高一数学必修二第一章

篇4:高一数学必修二第一章

一、集合(jihe)有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋

记作 a∈A ,相反,a不属于集合A 记作 aA

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集。AA

②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AB, BC ,那么 AC

④ 如果AB 同时 BA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x xS且 xA}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

2. 构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

6. 常用的函数表示法及各自的优点:

○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

○2 必须是对于区间D内的任意两个自变量x1,x2;当x1

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

○1 任取x1,x2∈D,且x1

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

函数 单调性

u=g(x) 增 增 减 减

y=f(u) 增 减 增 减

y=f[g(x)] 增 减 减 增

注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f(-x)与f(x)的关系;○3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数大(小)值(定义见课本p36页)

○1 利用二次函数的性质(配方法)求函数的大(小)值○2 利用图象求函数的大(小)值○3 利用函数单调性的判断函数的大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有小值f(b);

篇5:高一数学必修二第一章

第一单元

命题人:

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分

(时间:90分钟.总分150分)

第Ⅰ卷(选择题 共60分)

一、选择题:本答题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

42551.-300°化为弧度是 ( ) A. B. C. D. 3336

2.为得到函数ysin(2x)的图象,只需将函数ysin(2x)的图像( ) 36

A.向左平移个单位长度 B.向右平移个单位长度 44

C.向左平移个单位长度 D.向右平移个单位长度 22

3.函数ysin(2x)图像的对称轴方程可能是( ) 3

A.x

6 B.x

12 C.x

6 D.x

12x4.若实数x满足㏒2=2+sin,则 x1x10( )

A. 2x-9 B. 9-2x C.11 D. 9

y5.点A(x,y)是300°角终边上异于原点的一点,则值为( ) x

A.3 B. - 3 C. D. - 33

6. 函数ysin(2x)的单调递增区间是( ) 3

5A.k,k kZ 12125B.2k,2k 1212kZ

5C.k,k kZ 66

7.sin(-

5D.2k,2k kZ 6631011π)的值等于( ) A. B.- C. D.- 22322

8.在△ABC中,若sin(ABC)sin(ABC),则△ABC必是( )A.等腰三角形 C.等腰或直角三角形 B.直角三角形 D.等腰直角三角

9.函数ysinxsinx的值域是 ( )

A.0 B.1,1 C.0,1 D.2,0

10.函数ysinxsinx的值域是 ( )

A.1,1 B.0,2 C.2,2 D.2,0

11.函数ysinxtanx的奇偶性是( )

A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数

12.比较大小,正确的是( )

A.sin(5)sin3sin5

第Ⅱ卷(非选择题 共90分)

二、填空题(每小题6分,共30分)

13.终边在坐标轴上的角的集合为_________.

14.时针走过1小时50分钟,则分钟转过的角度是______.

15. 已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是C.sin3sin(5)sin5 B.sin(5)sin3sin5 D. sin3sin(5)sin5 ________________.

16.已知角的终边经过点P(-5,12),则sin+2cos的值为______.

17.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________.

三、解答题:本大题共4小题,共60分。解答应写出文字说明及演算步骤.。

第2 / 4页

18.已知sin是方程5x27x60的根,求

33sinsintan2(2)22

coscoscot()22

的值.(14分)

19.求函数y=-cos2x+3cosx+5的值及最小值,并写出x取何值时 4

函数有值和最小值。 (15分)

20.已知函数y=Asin(x) (A>0, >0,)的最小正周期为2, 3

最小值为-2,图像过(

21.用图像解不等式。(16分)

①sinx5,0),求该函数的解析式。 (15分) 931 ②cos2x 22

参考答案

一、选择题(每小题5分,共60分)

1----6、BBDCBA 7----12、CCDCAB

二、填空题(每小题6分,共30分)

n13.|,nZ 14. -660° 15.(2)rad 2

216. 17. 2 13

三、解答题(共60分)

18.(本小题14分)

解:由sin是方程5x27x60的根,可得

3 sin= 或sin=2(舍) -----------3分 5

33sin()sin()(tan)2

原式= sin(sin)(cot)

cos(cos)tan2 = sin(sin)(cot)

=-tan ------------10分

3 由sin=可知是第三象限或者第四象限角。 5

第3 / 4页

33 所以tan=或 44

即所求式子的值为

19.(本小题15分) 3 -------------14分 4

解:令t=cosx, 则t[1,1] -------------2分 所以函数解析式可化为:yt2t

=(t5 432)2 ------------6分 2

因为t[1,1], 所以由二次函数的图像可知:

当t311 时,函数有值为2,此时x2k或2k,kZ 266

1 当t=-1时,函数有最小值为,此时x2k,kZ 4

------------15分

20.(本小题15分)

222 解: , T即3 ------------3分 33

又函数的最小值为2, A2 ------------5分 所以函数解析式可写为y2sin(3x) 又因为函数图像过点(

所以有:2sin(35,0), 955 ---------9分 )0 解得k93

2 ------------13分 ,或33

2 所以,函数解析式为:y2sin(3x)或y2sin(3x) -------------15分 33

21.(每小题8分,共16分)

(1)、图略 ------------3分

5 由图可知:不等式的解集为2k,2k,kZ ----------8分 66

(2)、图略 -------------11分

11,kZ ---------16分 由图可知:不等式的解集为k,k1212

篇6:高一数学必修二第一章

第一章 集合(jihe)与函数概念

一、集合(jihe)有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

A集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>R| x-32的解集是{x>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

A① 任何一个集合是它本身的子集。A

B那就说集合A是集合B的真子集,记作A B(或B A)B,且A②真子集:如果A

CC ,那么 AB, B③如果 A

A 那么A=BB 同时 B④ 如果A

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

A}S且 x x记作: CSA 即 CSA ={x

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于

1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

2. 构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义

域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

6. 常用的函数表示法及各自的优点:

○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;

○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

篇7:高一数学必修二第一章

篇7:高一数学必修二第一章

  一、函数的概念

  在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。

  函数的概念和图象

  重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;

  ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用。

  二、函数关系的建立

  “探索具体问题中的数量关系和变化规律,并能运用函数进行描述和解决问题”,这是《课标》关于函数目标的一段描述。因此,各地中考试卷都有“函数建模及其应用”类问题,而建模的首要是建立函数表达式。

  三、函数的运算

  函数的运算是各阶段考试和高考命题的必考内容,数学函数的运算知识点是对大家夯实基础的重点内容,请大家务必认真掌握。

  四、函数的基本性质

  在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.

  C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}

  图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线多只有一个交点的若干条曲线或离散点组成。

  (2)画法

  A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),后用平滑的曲线将这些点连接起来.

  B、图象变换法(请参考必修4三角函数)

  常用变换方法有三种,即平移变换、伸缩变换和对称变换

  (3)作用:

  1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

篇8:高一数学必修二第一章

  定义:

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞),

  当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

  如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数*。

篇9:高一数学必修二第一章

1.已知A={x|3-3x>0},则下列各式正确的是(  )

A.3∈A B.1∈A

C.0∈A D.-1A

【解析】 集合A表示不等式3-3x>0的解集.显然3,1不满足不等式,而0,-1满足不等式,故选C.

【答案】 C

2.下列四个集合中,不 同于另外三个的是(  )

A.{y|y=2} B.{x=2}

C.{2} D.{x|x2-4x+4=0}

【解析】 {x=2}表示的是由一个等式组成的集合.故选B.

3.下列关系中,正确的个数为________.

①12∈R;② 2Q;③|-3|N*;④| -3|∈Q.

【解析】 本题考查常用数集及元素与集合的关系.显然12∈R,①正确;2Q,②正确;

|-3|=3∈N*,|-3|=3Q,③、④不正确.

【答案】 2

4.已知集合A={1,x,x2-x} ,B={1,2,x},若集合A与集合B相等,求x的值.

【解析】 因为集合A与集合B相等,

所以x2-x=2.∴x=2或x=-1.

当x=2时, 与集合元素的互异性矛盾.

当x=-1时 ,符合题意.

∴x=-1.

一、选择题(每小题5分,共20分)

1.下列命题中正确的(  )

①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4

A.只有①和④ B.只有②和③

C.只有② D.以上语句都不对

【解析】 {0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集 合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.

【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为(  )

A.{1,1} B.{1}

C.{x=1} D.{x2-2x+1=0}

【解析】 集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.

【答案】 B

3.已知集合A={x∈N*|-5≤x≤5},则必有(  )

A.-1∈A B.0∈A

C.3∈A D.1∈A

【解析】 ∵x∈N*,-5≤x≤5,

∴x=1,2,

即A={1,2},∴1∈A.故选D.

【答案】 D

4.定义集合运算:A*B={z|z=xy, x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为(  )

A.0 B.2

C.3 D.6

【解析】 依题意,A*B={0,2,4},其所有元素之和为6,故选D.

【答案】 D

二、填空题(每小题5分,共10分)

5.已知集合A={1,a2},实数a不能取的值的集合是________.

【解析】 由互异性知a2≠1,即a≠±1,

故实数a不能取的值的集合是{1,-1}.

【答案】 {1,-1}

6.已知P={x|2

【解析】 用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.

【答案】 6三、解答题(每小题10分,共20分)

7.选择适当的方法表示下列集合集.

(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;

(2)大 于2且小于6的有理数;

(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.

【解析】 (1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.

(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2

(3)用描述法表示该集合为

M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为

{(0,4),(1,3),(2,2),(3,1),(4,0)}.

8.设A表示集合{a2+2a-3,2,3},B表示集合

{2,|a+3|},已知5∈A且5B,求a的值.

【解析】 因为5∈A,所以a2+2a-3=5,

解得a=2或a=-4.

当a=2时,|a+3|=5,不符合题意,应舍去.

当a=-4时,|a+3|=1,符合题意,所以a=-4.

9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.

(1)若A中有两个元素, 求实数a的取值范围;

(2)若A中至多有一个元素,求实数a的取值范围.

【解析】 (1)∵A中有两个元素,

∴方程ax2-3x-4=0有两个不等的实数根,

∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.

(2)当a=0时,A={-43};

当a≠0时,若关于x 的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;

若关于x的方程无实数根,则Δ=9+16a<0,

即a<-916;

故所求的a的取值范围是a≤-916或a=0.

篇10:高一数学必修二第一章

篇10:高一数学必修二第一章

  【一】

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1.元素的确定性;2.元素的互异性;3.元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N*或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  4、集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  【二】

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  【三】

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

  A∪φ=A,A∪B=B∪A.

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  记作:CSA即CSA={x|x?S且x?A}

  S

  CsA

  A

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

  (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

篇11:高一数学必修二第一章

(时间:120分钟 满分:150分)

一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)

1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是(  )

A.一个算法只能含有一种逻辑结构

B.一个算法最多可以包含两种逻辑结构

C.一个算法必须含有上述三种逻辑结构

D.一个算法可能含有上述三种逻辑结构

解析 通读四个选项知,答案D最为合理,应选D.

答案 D

2.下列赋值语句正确的是(  )

A.M=a+1          B.a+1=M

C.M-1=a D.M-a=1

解析 根据赋值语句的功能知,A正确.

答案 A

3.学了算法你的收获有两点,一方面了解我国古代数学家的杰出成就,另一方面,数学的机械化,能做许多我们用笔和纸不敢做的有很大计算量的问题,这主要归功于算法语句的(  )

A.输出语句 B.赋值语句

C.条件语句 D.循环语句

解析 由题意知,应选D.

答案 D

4.读程序

其中输入甲中i=1,乙中i=1000,输出结果判断正确的是(  )

A.程序不同,结果不同

B.程序不同,结果相同

C.程序相同,结果不同

D.程序相同,结果相同

解析 图甲中用的是当型循环结构,输出结果是S=1+2+3+…+1000;

而图乙中用的是直到型循环结构,输出结果是

S=1000+999+…+3+2+1.可见这两图的程序不同,但输出结果相同,故选B.

答案 B

5.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是(  )

A.m=0? B.x=0?

C.x=1? D.m=1?

解析 阅读程序易知,判断框内应填m=1?,应选D.

答案 D

6.840和1764的公约数是(  )

A.84 B.12

C.168 D.252

解析 ∵1764=840×2+84,840=84×10,∴1764与840的公约数是84.

答案 A

7.用秦九韶算法求多项式:f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,v4的值为(  )

A.-57 B.220

C.-845 D.3392

解析 f(x)=(((((3x+5)x+6)x+79)x-8)x+35)x+12

当x=-4时,v0=3;

∴v1=3×(-4)+5=-7;v2=-7×(-4)+6=34,

v3=34×(-4)+79=-57;v4=-57×(-4)-8=220.

答案 B

8.1001101(2)与下列哪个值相等(  )

A.115(8) B.113(8)

C.114(8) D.116(8)

解析 先化为十进制:

1001101(2)=1×26+23+22+20=77,再化为八进制,

∴77=115(8),∴100110(2)=115(8).

答案 A

9.下面程序输出的结果为(  )

A.17 B.19

C.21 D.23

解析 当i=9时,S=2×9+3=21,判断条件9>=8成立,跳出循环,输出S.

答案 C

10.已知程序:

上述程序的含义是(  )

A.求方程x3+3x2-24x+3=0的零点

B.求一元三次多项式函数值的程序

C.求输入x后,输出y=x3+3x2-24x+3的值

D.y=x3+3x2-24x+3的流程图

解析 分析四个选项及程序知,应选C.

答案 C

11.执行如图所示的程序框图,输出的S值为(  )

A.2 B.4

C.8 D.16

解析 初始值k=0,S=1, k<3;

第一次循环:S=1,k=1<3;

第二次循环:S=2,k=2<3;

第三次循环:S=8,k=3,

终止循环输出S的值为8.

答案 C

12.如下边框图所示,已知集合A={x|框图中输出的x值},集合B={y|框图中输出的y值},全集U=Z,Z为整数集.当x=-1时,(UA)∩B=(  )

A.{-3,-1,5} B.{-3,-1,5,7}

C.{-3,-1,7} D.{-3,-1,7,9}

解析 当x=-1时,输出y=-3,x=0;

当x=0时,输出y=-1,x=1;

当x=1时,输出y=1,x=2;

当x=2时,输出y=3,x=3;

当x=3时,输出y=5,x=4;

当x=4时,输出y=7,x=5;

当x=5时,输出y=9,x=6,

当x=6时,∵6>5,∴终止循环.

此时A={0,1,2,3,4,5,6},B={-3,-1,1,3,5,7,9},

∴(UA)∩B={-3,-1,7,9}.

答案 D

二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)

13.将二进制数101101(2)化为十进制数,结果为________;再将结果化为8进制数,结果为________.

解析 101101(2)=1×25+0×24+1×23+1×22+0×2+1×20=45,∴化为十进制数为45;又45=8×5+5,∴45=55(8)

答案 45 55(8)

14.若输入8,则下列程序执行后输出的结果是______.

解析 这是一个利用条件结构编写的程序,当输入t=8时,

答案 0.7

15.根据条件填空,把程序框图补充完整,求[1,1000)内所有偶数的和.

①________,②________

答案 S=S+i i=i+2

16.下面程序执行后输出的结果是________,若要求画出对应的程序框图,则选择的程序框有________________.

 T=1 S=0WHILE S<=50 S=S+1 T=T+1WENDPRINT TEND

解析 本题为当型循环语句,可以先用特例循环几次,观察规律可得:

S=1,T=2;S=2,T=3;S=3,T=4;…;依此循环下去,S=49,T=50;S=50,T=51;S=51,T=52.终止循环,输出的结果为52.

本例使用了输出语句、赋值语句和循环语句,故用如下的程序框:起止框、处理框、判断框、输出框.

答案 52 起止框、处理框、判断框、输出框

三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)

17.(10分)画出函数y=π2x-5,x>0,0,x=0,π2x+3,x<0的流程图.

解 流程图如图所示.

18.(12分)用“更相减损术”求(1)中两数的公约数;用“辗转相除法”求(2)中两数的公约数.

(1)72,168;

(2)98,280.

解 (1)用“更相减损术”

168-72=96,

96-72=24,

72-24=48,

48-24=24.

∴72与168的公约数是24.

(2)用“辗转相除法”

280=98×2+84,

98=84×1+14,

84=14×6.

∴98与280的公约数是14.

19.(12分)已知程序框图如图所示.

(1)指出该程序框图的算法功能;

(2)写出该程序框图所对应的程序.

解 (1)程序框图的算法功能为:求满足1×3×5×…×n>10000的最小正奇数n.

(2)程序:

S=1i=1WHILE S<=10000 i=i+2 S=S*iWENDPRINT iEND

20.(12分)用秦九韶算法求函数f(x)=x5+x3+x2+x+1,当x=3时的函数值.

解 f(x)=x5+x3+x2+x+1

=((((x+0)x+1)x+1)x+1)x+1.

当x=3时的值:

v0=1,v1=1×3+0=3,v2=3×3+1=10,

v3=10×3+1=31,v4=31×3+1=94,

v5=94×3+1=283.

∴当x=3时,f(3)=283.

21.(12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,并用基本语句编写的程序.

解 程序框图如下.

程序如下.

S=0k=1DO S=S+1/k*k+1 k=k+1LOOP UNTIL k>99PRINT SEND

22.(12分)求函数y=3x-2,x≥2,-2,x<2的值的程序框图如图所示.

(1)指出程序框图中的错误之处并写出算法;

(2)重新绘制解决该问题的程序框图,且回答下面提出的问题:

问题1,要使输出的值为7,输入的x的值应为多少?

问题2,要使输出的值为正数,输入的x应满足什么条件?

解 (1)函数y=3x-2 x≥2,-2 x<2是分段函数,其程序框图中应该有判断框,应用条件结构,不应该是只有顺序结构.

正确的算法步骤如下:

第一步,输入x.

第二步,若x≥2,则y=3x-2,

否则y=-2.

第三步,输出y.

(2)根据(1)中的算法步骤,可以画出程序框图如下.

问题1,要使输出的值为7,

则3x-2=7,∴x=3.

即输入的x的值应为3.

问题2,要使输出的值为正数,则3x-2>0,

∴x>23.

又x≥2,∴x≥2.故当输入的x≥2时,输出的值为正数.

篇12:高一数学必修二第一章

  考点一、映射的概念

  1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

  2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一

  考点二、函数的概念

  1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。

  2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。

最新推荐

高二下册物理磁场单元测试题(含答案)

高二下册物理磁场单元测试题,包括试题内容及其答案。试题涵盖了磁场的基本概念、磁场对电流的作用、磁场对运动电荷的作用等知识点,旨在帮助学生巩固和提高对磁场相关知识点的掌握程度。通过练习这些试题,学生可以加深对磁场概念的理解,并培养分析和解决问题的能力。

高二上地理知识点复习

热门推荐

高一生物复习必修一

高一生物必修一的复习内容。首先介绍了被动运输、主动运输的实验和知识点,包括物质跨膜运输的方式、实验中的变量控制原则等。然后,阐述了水和无机盐的作用,包括它们在细胞中的存在形式以及生理功能等。通过复习这些内容,有助于学生更好地理解和掌握生物学的基本知识

猜你喜欢

高二上政治期末答案

高二上政治期末考试中关于哲学的一些问题。文章首先阐述了哲学的总揽性和综合性,指出哲学研究包括自然界和人类社会以及人与世界的关系。接着文章讨论了繁荣发展哲学社会科学是我国文化发展的重要任务,阐述了先进哲学的重要性。文章还提到了哲学发展的基础和与具体科学

Copyright © 2024 ~ 2025 易高考

京ICP备10209629号-13

北京九天揽月科技有限公司