高二数学必修二下册

篇1:高二数学必修二下册
1.高二年级数学必修二下册知识点
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp、空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp、空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
2.高二年级数学必修二下册知识点
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
3.高二年级数学必修二下册知识点
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上XX。
单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
奇偶性
设为一个实变量实值函数,若有f(-x)=-f(x),则f(x)为奇函数。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,若有f(x)=f(-x),则f(x)为偶函数。
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
偶函数的例子有|x|、x2、cos(x)和cosh(x)。
偶函数不可能是个双射映射。
连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
4.高二年级数学必修二下册知识点
一、事件
1.在条件SS的必然事件。
2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件。
3.在条件SS的随机事件。
二、概率和频率
1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据。
2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA
nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率。
3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A)。
三、事件的关系与运算
四、概率的几个基本性质
1.概率的取值范围:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。
5.对立事件的概率:
若事件A与事件B互为对立事件,则AB为必然事件。P(AB)=1,P(A)=1—P(B)。
5.高二年级数学必修二下册知识点
在中国古代把数学叫算术,又称算学,最后才改为数学。
1.任意角
(1)角的分类:
①按旋转方向不同分为正角、负角、零角。
②按终边位置不同分为象限角和轴线角。
(2)终边相同的角:
终边与角相同的角可写成+k360(kZ)。
(3)弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角。
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径。
③用弧度做单位来度量角的制度叫做弧度制。比值与所取的r的大小无关,仅与角的大小有关。
④弧度与角度的换算:360弧度;180弧度。
⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.
2.任意角的三角函数
(1)任意角的三角函数定义:
设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数。
(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦。
3.三角函数线
设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M。由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT。我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线。
篇2:高二数学必修二下册
1.高二下册数学必修二知识点
一、导数的应用
1.用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益问题
3)面积、体积最(大)问题
二、推理与证明
1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,*的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,*的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
2.高二下册数学必修二知识点
1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);
试验的全部结果所构成的区域长度(面积或体积)
3、几何概型的特点:
1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等、
4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。
通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。
3.高二下册数学必修二知识点
直线的倾斜角:
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
直线的斜率:
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式。
注意:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
直线方程:
1.点斜式:y-y0=k(x-x0)
(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。
3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。
4.高二下册数学必修二知识点
解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
数列
(1)数列的概念和简单表示法。
①了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。
②了解数列是自变量为正整数的一类函数。
(2)等差数列、等比数列。
①理解等差数列、等比数列的概念。
②掌握等差数列、等比数列的通项公式与前项和公式。
③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
④了解等差数列与一次函数、等比数列与指数函数的关系。
不等关系
一元二次不等式
①会从实际情境中抽象出一元二次不等式模型。
②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
二元一次不等式组与简单线性规划问题
①会从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
基本不等式:
①了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点。
5.高二下册数学必修二知识点
反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
篇3:高二数学必修二下册
1.高二下册数学必修二知识点复习
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换y=f(x)→y=f(x+a),y=f(x)+b
注意:
(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x),关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
2.高二下册数学必修二知识点复习
一、基础知识
(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.
(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).
圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.
(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.
二、重难点与易错点
重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.
(1)区分逆命题与命题的否定;
(2)理解充分条件与必要条件;
(3)椭圆、双曲线与抛物线的定义;
(4)椭圆与双曲线的几何性质,特别是离心率问题;
(5)直线与圆锥曲线的位置关系问题;
(6)直线与圆锥曲线中的弦长与面积问题;
(7)直线与圆锥曲线问题中的参数求解与性质证明;
(8)轨迹与轨迹求法;
(9)运用空间向量求空间中的角度与距离;
(10)立体几何中的动态问题探究.
3.高二下册数学必修二知识点复习
一、变量间的相关关系
1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.
2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.
二、两个变量的线性相关
从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.
当r>0时,表明两个变量正相关;
当r<0时,表明两个变量负相关.
r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.
三、解题方法
1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.
2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.
3.由相关系数r判断时|r|越趋近于1相关性越强.
4.高二下册数学必修二知识点复习
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x轴的线段长不变,平行于y轴的线段长减半.
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
5.高二下册数学必修二知识点复习
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、直线与直线的位置关系:
(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:.⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长
篇4:高二数学必修二下册
1.高二下册数学必修二重要知识点
复数的概念:
形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
(1)复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
(1)它的平方等于-1,即i2=-1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
2.高二下册数学必修二重要知识点
1、求函数的值和最小值
f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的值和最小值。
一般而言,可以把函数化简,化简成为:
f(x)=k(ax+b)2+c的形式,在x的定义域内取值。
当k>0时,k(ax+b)2≥0,f(x)有极小值c。
当k<0时,k(ax+b)2≤0,f(x)有值c。
2、常见的求函数最值方法有
配方法:形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。
判别式法:形如的分式函数,将其化成系数含有y的关于x的二次方程.由于,0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。
利用函数的单调性首先明确函数的定义域和单调性,再求最值。
利用均值不等式,形如的函数,及,注意正,定,等的应用条件,即:a,b均为正数,是定值,a=b的等号是否成立。
换元法:形如的函数,令,反解出x,代入上式,得出关于t的函数,注意t的定义域范围,再求关于t的函数的最值。
3.高二下册数学必修二重要知识点
1、双曲线渐近线方程
双曲线的渐近线方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x(焦点在y轴上),或令双曲线标准方程x2/a2-y2/b2=1中的1为零,即得渐近线方程。
方程x2/a2-y2/b2=1(a>0,b>0)
c2=a2+b2
焦点坐标(-c,0),(c,0)
渐近线方程:y=±bx/a
方程y2/a2-x2/b2=1(a>0,b>0)
c2=a2+b2
焦点坐标(0,c),(0,-c)
渐近线方程:y=±ax/b
2、渐近线的特点
无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。
当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。
y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程
当焦点在x轴上时双曲线渐近线的方程是y=[±b/a]x
当焦点在y轴上时双曲线渐近线的方程是y=[±a/b]x
4.高二下册数学必修二重要知识点
1、约数的例子
在自然数(0和正整数)的范围内,
任何正整数都是0的约数。
4的正约数有:1、2、4。
6的正约数有:1、2、3、6。
10的正约数有:1、2、5、10。
12的正约数有:1、2、3、4、6、12。
15的正约数有:1、3、5、15。
18的正约数有:1、2、3、6、9、18。
20的正约数有:1、2、4、5、10、20。
注意:一个数的约数必然包括1及其本身。
2、约数的个数怎么求
要用到约数个数定理
对于一个数a可以分解质因数:a=a1的r1次方乘以a2的r2次方乘以a3的r3次方乘以……则a的约数的个数就是(r1+1)(r2+1)(r3+1)……
需要指出来的是,a1,a2,a3……都是a的质因数。r1,r2,r3……是a1,a2,a3……的指数。
比如,360=2^3*3^2*5(^是次方的意思)
所以个数是(3+1)*(2+1)*(1+1)=24个
5.高二下册数学必修二重要知识点
1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
2.绝对值不等式的解法及其几何意义是什么?
3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
5.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
6.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
数列
7.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
8.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
9.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
10.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
11.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
篇5:高二数学必修二下册
1.高二下学期数学必修三知识点
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法,其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
2.高二下学期数学必修三知识点
1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
2.算法的特点:
(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
(4)不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.
3.高二下学期数学必修三知识点
(1)总体和样本
①在统计学中,把研究对象的全体叫做总体.
②把每个研究对象叫做个体.
③把总体中个体的总数叫做总体容量.
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量.
(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:
①抽签法
②随机数表法
③计算机模拟法
④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异情况;
②允许误差范围;
③概率保证程度。
(4)抽签法:
①给调查对象群体中的每一个对象编号;
②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查
4.高二下学期数学必修三知识点
一、导数的应用
1、用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2、生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益问题
3)面积、体积最(大)问题
二、推理与证明
1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,*的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,*的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1、二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的`九种技巧这样的解题思路需要再做题的过程中总结出来。
四、坐标平面上的直线
1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
五、圆锥曲线
1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。
3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。
5.高二下学期数学必修三知识点
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.
(2)随机数表法:随机数表抽样“三步曲”:
第一步,将总体中的个体编号;
第二步,选定开始的数字;
第三步,获取样本号码概率.